Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Horm Res Paediatr ; 95(5): 492-498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35952631

RESUMO

INTRODUCTION: The hyperinsulinemia-hyperammonemia syndrome (HIHA) is the second most common cause of congenital hyperinsulinism and is caused by activating heterozygous missense mutations in GLUD1. In the majority of HIHA cases, the GLUD1 mutation is found to be de novo. We have identified 3 patients in whom clinical evaluation was suggestive of HIHA but with negative mutation analysis in peripheral blood DNA for GLUD1 as well as other known HI genes. METHODS: We performed next-generation sequencing (NGS) on peripheral blood DNA from two children with clinical features of HIHA in order to look for mosaic mutations in GLUD1. Pancreas tissue was also available in one of these cases for NGS. In addition, NGS was performed on peripheral blood DNA from a woman with a history of HI in infancy whose child had HIHA due to a presumed de novo GLUD1 mutation. RESULTS: Mosaic GLUD1 mutations were identified in these 3 cases at percent mosaicism ranging from 2.7% to 10.4% in peripheral blood. In one case with pancreas tissue available, the mosaic GLUD1 mutation was present at 17.9% and 28.9% in different sections of the pancreas. Two unique GLUD1 mutations were identified in these cases, both of which have been previously reported (c.1493c>t/p.Ser445Leu and c.820c>t/p.Arg221Cys). CONCLUSION: The results suggest that low-level mosaic mutations in known HI genes may be the underlying molecular mechanism in some children with HI who have negative genetic testing in peripheral blood DNA.


Assuntos
Hiperinsulinismo Congênito , Hiperamonemia , Hiperinsulinismo , Criança , Feminino , Humanos , Hiperamonemia/genética , Glutamato Desidrogenase/genética , Hiperinsulinismo/genética , Mutação , DNA , Hiperinsulinismo Congênito/genética
2.
J Clin Endocrinol Metab ; 107(5): 1346-1356, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34971397

RESUMO

CONTEXT: The hyperinsulinism/hyperammonemia (HI/HA) syndrome, the second-most common form of congenital hyperinsulinism, has been associated with dominant mutations in GLUD1, coding for the mitochondrial enzyme glutamate dehydrogenase, that increase enzyme activity by reducing its sensitivity to allosteric inhibition by GTP. OBJECTIVE: To identify the underlying genetic etiology in 2 siblings who presented with the biochemical features of HI/HA syndrome but did not carry pathogenic variants in GLUD1, and to determine the functional impact of the newly identified mutation. METHODS: The patients were investigated by whole exome sequencing. Yeast complementation studies and biochemical assays on the recombinant mutated protein were performed. The consequences of stable slc25a36 silencing in HeLa cells were also investigated. RESULTS: A homozygous splice site variant was identified in solute carrier family 25, member 36 (SLC25A36), encoding the pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine as well as guanine nucleotides across the inner mitochondrial membrane. The mutation leads to a 26-aa in-frame deletion in the first repeat domain of the protein, which abolishes transport activity. Furthermore, knockdown of slc25a36 expression in HeLa cells caused a marked reduction in the mitochondrial GTP content, which likely leads to a hyperactivation of glutamate dehydrogenase in our patients. CONCLUSION: We report for the first time a mutation in PNC2/SLC25A36 leading to HI/HA and provide functional evidence of the molecular mechanism responsible for this phenotype. Our findings underscore the importance of mitochondrial nucleotide metabolism and expand the role of mitochondrial transporters in insulin secretion.


Assuntos
Hiperinsulinismo Congênito , Hiperamonemia , Hiperinsulinismo , Hiperinsulinismo Congênito/genética , Glutamato Desidrogenase/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hiperamonemia/genética , Hiperinsulinismo/genética , Hipoglicemia , Mutação , Nucleotídeos
3.
Metab Brain Dis ; 36(7): 2169-2172, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34427841

RESUMO

Biallelic pathogenic variants in the neuroblastoma amplified sequence (NBAS) gene were firstly (2015) identified as a cause of fever-triggered recurrent acute liver failure (RALF). Since then, some patients with NBAS deficiency presenting with neurologic features, including a motor delay, intellectual disability, muscular hypotonia and a mild brain atrophy, have been reported. Here, we describe a case of pediatric patient diagnosed with NBAS deficiency due to a homozygous c.2809C > G, p.(Pro937Ala) variant presenting with RALF with severe hyperammonemia, acquired microcephaly and progressive brain atrophy. Not reported in the literature findings include severe hyperammonemia during ALF episode, and neurologic features in the form of acquired progressive microcephaly with brain atrophy. The latter raises the hypothesis about a primary neurologic phenotype in NBAS deficiency.


Assuntos
Hiperamonemia , Falência Hepática Aguda , Microcefalia , Neuroblastoma , Atrofia/genética , Atrofia/patologia , Encéfalo/metabolismo , Criança , Humanos , Hiperamonemia/genética , Hiperamonemia/patologia , Falência Hepática Aguda/genética , Falência Hepática Aguda/patologia , Microcefalia/complicações , Microcefalia/diagnóstico por imagem , Microcefalia/genética , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
4.
J Biol Chem ; 297(3): 101023, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343564

RESUMO

Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.


Assuntos
Genômica , Hiperamonemia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteômica , Transcriptoma , Animais , Citometria de Fluxo , Humanos , Hiperamonemia/genética , Immunoblotting/métodos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
5.
Mol Genet Metab ; 133(2): 148-156, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846069

RESUMO

BACKGROUND: Urea cycle disorders (UCDs) are among the most common inborn errors of liver metabolism. As therapies for hyperammonemia associated with urea cycle dysfunction have improved, chronic complications, such as liver disease, have become increasingly apparent in individuals with UCDs. Liver disease in UCDs may be associated with hepatic inflammation, hepatic fibrosis, portal hypertension, liver cancer and even liver failure. However, except for monitoring serum aminotransferases, there are no clear guidelines for screening and/or monitoring individuals with UCDs for liver disease. Thus, we systematically evaluated the potential utility of several non-invasive biomarkers for liver fibrosis in UCDs. METHODS: We evaluated grey-scale ultrasonography, liver stiffness obtained from shear wave elastography (SWE), and various serum biomarkers for hepatic fibrosis and necroinflammation, in a cohort of 28 children and adults with various UCDs. RESULTS: Overall, we demonstrate a high burden of liver disease in our participants with 46% of participants having abnormal grey-scale ultrasound pattern of the liver parenchyma, and 52% of individuals having increased liver stiffness. The analysis of serum biomarkers revealed that 32% of participants had elevated FibroTest™ score, a marker for hepatic fibrosis, and 25% of participants had increased ActiTest™ score, a marker for necroinflammation. Interestingly, liver stiffness did not correlate with ultrasound appearance or FibroTest™. CONCLUSION: Overall, our results demonstrate the high overall burden of liver disease in UCDs and highlights the need for further studies exploring new tools for identifying and monitoring individuals with UCDs who are at risk for this complication. TRIAL REGISTRATION: This study has been registered in ClinicalTrials.gov (NCT03721367).


Assuntos
Argininossuccinato Liase/sangue , Doenças Genéticas Inatas/sangue , Cirrose Hepática/sangue , Hepatopatias/sangue , Distúrbios Congênitos do Ciclo da Ureia/sangue , Adolescente , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Técnicas de Imagem por Elasticidade , Feminino , Doenças Genéticas Inatas/diagnóstico por imagem , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Humanos , Hiperamonemia/sangue , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/genética , Cirrose Hepática/patologia , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Erros Inatos do Metabolismo/genética , Pessoa de Meia-Idade , Ultrassonografia , Distúrbios Congênitos do Ciclo da Ureia/genética , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/patologia , Adulto Jovem
6.
Sci Rep ; 11(1): 3580, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574402

RESUMO

The urea cycle protects the central nervous system from ammonia toxicity by converting ammonia to urea. N-acetylglutamate synthase (NAGS) catalyzes formation of N-acetylglutamate, an essential allosteric activator of carbamylphosphate synthetase 1. Enzymatic activity of mammalian NAGS doubles in the presence of L-arginine, but the physiological significance of NAGS activation by L-arginine has been unknown. The NAGS knockout (Nags-/-) mouse is an animal model of inducible hyperammonemia, which develops hyperammonemia without N-carbamylglutamate and L-citrulline supplementation (NCG + Cit). We used adeno associated virus (AAV) based gene transfer to correct NAGS deficiency in the Nags-/- mice, established the dose of the vector needed to rescue Nags-/- mice from hyperammonemia and measured expression levels of Nags mRNA and NAGS protein in the livers of rescued animals. This methodology was used to investigate the effect of L-arginine on ureagenesis in vivo by treating Nags-/- mice with AAV vectors encoding either wild-type or E354A mutant mouse NAGS (mNAGS), which is not activated by L-arginine. The Nags-/- mice expressing E354A mNAGS were viable but had elevated plasma ammonia concentration despite similar levels of the E354A and wild-type mNAGS proteins. The corresponding mutation in human NAGS (NP_694551.1:p.E360D) that abolishes binding and activation by L-arginine was identified in a patient with NAGS deficiency. Our results show that NAGS deficiency can be rescued by gene therapy, and suggest that L-arginine binding to the NAGS enzyme is essential for normal ureagenesis.


Assuntos
Aminoácido N-Acetiltransferase/genética , Técnicas de Transferência de Genes , Hiperamonemia/genética , Distúrbios Congênitos do Ciclo da Ureia/genética , Aminoácido N-Acetiltransferase/metabolismo , Animais , Arginina/metabolismo , Arginina/farmacologia , Citrulina/metabolismo , Citrulina/farmacologia , Dependovirus/genética , Modelos Animais de Doenças , Glutamatos/metabolismo , Glutamatos/farmacologia , Humanos , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Hiperamonemia/terapia , Camundongos , Camundongos Knockout , Proteínas Mutantes/genética , Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/patologia , Distúrbios Congênitos do Ciclo da Ureia/terapia
7.
J Pediatr Endocrinol Metab ; 34(3): 389-393, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33180048

RESUMO

OBJECTIVES: Hyperammonemia in a newborn is a serious condition, which requires prompt intervention as it can lead to severe neurological impairment and death if left untreated. The most common causes of hyperammonemia in a newborn are acute liver failure and inherited metabolic disorders. Several mitochondrial disorders have been described as a cause of severe neonatal hyperammonemia. CASE PRESENTATION: Here we describe a new case of adenosine-triphosphate (ATP) synthase deficiency due to m.8528T>C mutation as a novel cause of severe neonatal hyperammonemia. So far six patients with this mutation have been described but none of them was reported to need hemodialysis in the first days of life. CONCLUSION: This broadens the so far known differential diagnosis of severe neonatal hyperammonemia requiring hemodialysis.


Assuntos
Hiperamonemia/genética , Mutação , ATPases Translocadoras de Prótons/genética , Diálise Renal , Diagnóstico Diferencial , Feminino , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/terapia , Recém-Nascido , ATPases Translocadoras de Prótons/deficiência
8.
Sci Rep ; 10(1): 16523, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020580

RESUMO

Glutamate dehydrogenase (GDH) is a key enzyme interlinking carbon and nitrogen metabolism. Recent discoveries of the GDH specific role in breast cancer, hyperinsulinism/hyperammonemia (HI/HA) syndrome, and neurodegenerative diseases have reinvigorated interest on GDH regulation, which remains poorly understood despite extensive and long standing studies. Notwithstanding the growing evidence of the complexity of allosteric network behind GDH regulation, identifications of allosteric factors and associated mechanisms are paramount to deepen our understanding of the complex dynamics that regulate GDH enzymatic activity. Combining structural analyses of cryo-electron microscopy data with molecular dynamic simulations, here we show that the cofactor NADH is a key player in the GDH regulation process. Our structural analysis indicates that, binding to the regulatory sites in proximity of the antenna region, NADH acts as a positive allosteric modulator by enhancing both the affinity of the inhibitor GTP binding and inhibition of GDH catalytic activity. We further show that the binding of GTP to the NADH-bound GDH activates a triangular allosteric network, interlinking the inhibitor with regulatory and catalytic sites. This allostery produces a local conformational rearrangement that triggers an anticlockwise rotational motion of interlinked alpha-helices with specific tilted helical extension. This structural transition is a fundamental switch in the GDH enzymatic activity. It introduces a torsional stress, and the associated rotational shift in the Rossmann fold closes the catalytic cleft with consequent inhibition of the deamination process. In silico mutagenesis examinations further underpin the molecular basis of HI/HA dominant mutations and consequent over-activity of GDH through alteration of this allosteric communication network. These results shed new light on GDH regulation and may lay new foundation in the design of allosteric agents.


Assuntos
Regulação Alostérica/fisiologia , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/ultraestrutura , Difosfato de Adenosina/metabolismo , Biofísica/métodos , Biologia Computacional/métodos , Microscopia Crioeletrônica/métodos , Desaminação , Guanosina Trifosfato/metabolismo , Hiperamonemia/genética , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Mutação/efeitos dos fármacos , NAD/metabolismo , Conformação Proteica
9.
J Pediatr Endocrinol Metab ; 33(6): 683-690, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32447334

RESUMO

Background Fatty acid ß-oxidation disorders (FAODs) include more than 15 distinct disorders and have a wide variety of symptoms, usually not evident between episodes of acute decompensation. After the introduction of newborn screening (NBS) using tandem mass spectrometry (MS/MS), early identification of FAODs has become feasible. We analyzed the MS/MS results in Tianjin, China during a six-year period to evaluate the incidence, disease spectrum, and genetic characteristics of FAODs. Methods We analyzed the MS/MS results for screening FAODs from May 2013 to December 2018 in Tianjin, China. Infants with positive screening results were confirmed through next-generation sequencing and validated by Sanger sequencing. Results A total of 220,443 infants were screened and 25 FAODs patients were identified (1:8,817). Primary carnitine deficiency (PCD) with an incidence rate up to 1:20,040 was the most common disorder among all FAODs. Recurrent mutations of relatively common diseases, like PCD and short-chain acyl-CoA dehydrogenase deficiency (SCADD), were identified. During the follow-up, two patients suffered from sudden death due to carnitine palmitoyl transferase-Ⅱ deficiency (CPT Ⅱ) and very-long-chain acyl-CoA dehydrogenase deficiency (VLCAD). Conclusion Our data indicated that FAODs are relatively common in Tianjin and may even cause infant death in certain cases. The elucidated disease spectrum and genetic backgrounds elucidated in this study may contribute to the treatment and prenatal genetic counseling of FAODs.


Assuntos
Ácidos Graxos/metabolismo , Transtornos do Metabolismo dos Lipídeos/diagnóstico , Transtornos do Metabolismo dos Lipídeos/epidemiologia , Transtornos do Metabolismo dos Lipídeos/genética , Cardiomiopatias/diagnóstico , Cardiomiopatias/epidemiologia , Cardiomiopatias/genética , Carnitina/deficiência , Carnitina/genética , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , China/epidemiologia , Síndrome Congênita de Insuficiência da Medula Óssea/diagnóstico , Síndrome Congênita de Insuficiência da Medula Óssea/epidemiologia , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Feminino , Seguimentos , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/epidemiologia , Hiperamonemia/genética , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/epidemiologia , Erros Inatos do Metabolismo Lipídico/genética , Masculino , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/epidemiologia , Erros Inatos do Metabolismo/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/genética , Doenças Musculares/diagnóstico , Doenças Musculares/epidemiologia , Doenças Musculares/genética , Triagem Neonatal/métodos , Oxirredução , Espectrometria de Massas em Tandem
10.
Mol Cell Biol ; 39(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31138664

RESUMO

Increased ribosomal biogenesis occurs during tissue hypertrophy, but whether ribosomal biogenesis is impaired during atrophy is not known. We show that hyperammonemia, which occurs in diverse chronic disorders, impairs protein synthesis as a result of decreased ribosomal content and translational capacity. Transcriptome analyses, real-time PCR, and immunoblotting showed consistent reductions in the expression of the large and small ribosomal protein subunits (RPL and RPS, respectively) in hyperammonemic murine skeletal myotubes, HEK cells, and skeletal muscle from hyperammonemic rats and human cirrhotics. Decreased ribosomal content was accompanied by decreased expression of cMYC, a positive regulator of ribosomal biogenesis, as well as reduced expression and activity of ß-catenin, a transcriptional activator of cMYC. However, unlike the canonical regulation of ß-catenin via glycogen synthase kinase 3ß (GSK3ß)-dependent degradation, GSK3ß expression and phosphorylation were unaltered during hyperammonemia, and depletion of GSK3ß did not prevent ammonia-induced degradation of ß-catenin. Overexpression of GSK3ß-resistant variants, genetic depletion of IκB kinase ß (IKKß) (activated during hyperammonemia), protein interactions, and in vitro kinase assays showed that IKKß phosphorylated ß-catenin directly. Overexpressing ß-catenin restored hyperammonemia-induced perturbations in signaling responses that regulate ribosomal biogenesis. Our data show that decreased protein synthesis during hyperammonemia is mediated via a novel GSK3ß-independent, IKKß-dependent impairment of the ß-catenin-cMYC axis.


Assuntos
Hiperamonemia/metabolismo , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/metabolismo , beta Catenina/química , beta Catenina/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Hiperamonemia/genética , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Camundongos , Proteólise , Proteômica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Análise de Sequência de RNA , Transdução de Sinais
11.
Indian J Pediatr ; 86(11): 1051-1053, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31119523

RESUMO

Congenital hyperinsulinism (CHI) is a clinically and genetically heterogeneous disorder, characterized by dysregulated insulin secretion. Pathogenic variants in at least twelve different genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A, HNF1A, UCP2, TRMT10A HK1, and PGM1) are known to cause CHI. Pathogenic variants in the GLUD1 gene, which encodes the enzyme glutamate dehydrogenase (GDH), account for 5% of the cases of congenital hyperinsulinemic hypoglycemia. Pathogenic variants in GLUD1 typically present in late infancy, are diet and/or diazoxide-responsive and cause protein-induced hyperinsulinemic hypoglycemia as insulin secretion is triggered by allosteric activation of GDH by leucine. The authors are presenting three unrelated Indian children, who manifested with fasting as well as dietary protein induced hypoglycemia in late infancy, and were diagnosed to have hyperinsulinemic hyperammonemic hypoglycemia due to pathogenic variants in GLUD1. Although the hypoglycemia responded to diazoxide, delayed diagnosis and irregular treatment had resulted in neurological problems in two of the three children. Early identification, appropriate dietary modifications and regular treatment with diazoxide can prevent adverse neurological outcome.


Assuntos
Hiperinsulinismo Congênito/genética , Predisposição Genética para Doença/genética , Glutamato Desidrogenase/genética , Hiperamonemia/genética , Hiperinsulinismo/genética , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/tratamento farmacológico , Diazóxido/uso terapêutico , Feminino , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/tratamento farmacológico , Hiperinsulinismo/diagnóstico , Hiperinsulinismo/tratamento farmacológico , Índia , Lactente , Secreção de Insulina , Masculino
12.
Cancer Med ; 8(5): 1996-2004, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30977266

RESUMO

BACKGROUND: Cancer patients receiving chemotherapy often complain of "chemobrain" or cognitive impairment, but mechanisms remain elusive. METHODS: A patient with gastric cancer developed delirium and hyperammonemia after chemotherapy with the 5-fluorouracil pro-drug capecitabine. Exome sequencing facilitated a search for mutations among 43 genes associated with hyperammonemia and affecting the urea cycle directly or indirectly. RESULTS: The patient's urea cycle was impaired by capecitabine-induced liver steatosis, and portosystemic shunting of gut ammonia into the systemic circulation. The patient was also heterozygous for amino acid substitution mutations previously reported to create dysfunctional proteins in 2 genes, ORNT2 (ornithine transporter-2 for the urea cycle), and ETFA (electron transport flavoprotein alpha for fatty acid oxidation). The mutations explained the patient's abnormal plasma amino acid profile and exaggerated response to allopurinol challenge. Global population variations among the 43 hyperammonemia genes were assessed for inactivating mutations, and for amino acid substitutions predicted to be deleterious by complementary algorithms, SIFT and PolyPhen-2. One or 2 deleterious mutations occur among the 43 genes in 13.9% and 1% of individuals, respectively. CONCLUSIONS: Capecitabine and 5-fluorouracil inhibit pyrimidine biosynthesis, decreasing ammonia utilization. These drugs can induce hyperammonemia in susceptible individuals. The risk factors of hyperammonemia, gene mutations and liver dysfunction, are not rare. Diagnosis will trigger appropriate treatment and ameliorate brain toxicity.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Capecitabina/efeitos adversos , Hiperamonemia/induzido quimicamente , Neoplasias Gástricas/tratamento farmacológico , Idoso , Feminino , Humanos , Hiperamonemia/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/cirurgia , Ureia/metabolismo
13.
J Inherit Metab Dis ; 42(6): 1044-1053, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30835861

RESUMO

The enzyme carbamoyl phosphate synthetase 1 (CPS1; EC 6.3.4.16) forms carbamoyl phosphate from bicarbonate, ammonia, and adenosine triphosphate (ATP) and is activated allosterically by N-acetylglutamate. The neonatal presentation of bi-allelic mutations of CPS1 results in hyperammonemia with reduced citrulline and is reported as the most challenging nitrogen metabolism disorder to treat. As therapeutic interventions are limited, patients often develop neurological injury or die from hyperammonemia. Survivors remain vulnerable to nitrogen overload, being at risk for repetitive neurological injury. With transgenic technology, our lab developed a constitutive Cps1 mutant mouse and reports its characterization herein. Within 24 hours of birth, all Cps1 -/- mice developed hyperammonemia and expired. No CPS1 protein by Western blot or immunostaining was detected in livers nor was Cps1 mRNA present. CPS1 enzymatic activity was markedly decreased in knockout livers and reduced in Cps1+/- mice. Plasma analysis found markedly reduced citrulline and arginine and markedly increased glutamine and alanine, both intermolecular carriers of nitrogen, along with elevated ammonia, taurine, and lysine. Derangements in multiple other amino acids were also detected. While hepatic amino acids also demonstrated markedly reduced citrulline, arginine, while decreased, was not statistically significant; alanine and lysine were markedly increased while glutamine was trending towards significance. In conclusion we have determined that this constitutive neonatal mouse model of CPS1 deficiency replicates the neonatal human phenotype and demonstrates the key biochemical features of the disorder. These mice will be integral for addressing the challenges of developing new therapeutic approaches for this, at present, poorly treated disorder.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/complicações , Doença da Deficiência da Carbamoil-Fosfato Sintase I/mortalidade , Glutamina/sangue , Hiperamonemia , Animais , Animais Recém-Nascidos , Carbamoil-Fosfato Sintase (Amônia)/deficiência , Doença da Deficiência da Carbamoil-Fosfato Sintase I/sangue , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Hiperamonemia/sangue , Hiperamonemia/complicações , Hiperamonemia/genética , Hiperamonemia/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação
14.
J Inherit Metab Dis ; 42(6): 1128-1135, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30724386

RESUMO

The urea cycle and glutamine synthetase (GS) are the two main pathways for waste nitrogen removal and their deficiency results in hyperammonemia. Here, we investigated the efficacy of liver-specific GS overexpression for therapy of hyperammonemia. To achieve hepatic GS overexpression, we generated a helper-dependent adenoviral (HDAd) vector expressing the murine GS under the control of a liver-specific expression cassette (HDAd-GS). Compared to mice injected with a control vector expressing an unrelated reporter gene (HDAd-alpha-fetoprotein), wild-type mice with increased hepatic GS showed reduced blood ammonia levels and a concomitant increase of blood glutamine after intraperitoneal injections of ammonium chloride, whereas blood urea was unaffected. Moreover, injection of HDAd-GS reduced blood ammonia levels at baseline and protected against acute hyperammonemia following ammonia challenge in a mouse model with conditional hepatic deficiency of carbamoyl phosphate synthetase 1 (Cps1), the initial and rate-limiting step of ureagenesis. In summary, we found that upregulation of hepatic GS reduced hyperammonemia in wild-type and Cps1-deficient mice, thus confirming a key role of GS in ammonia detoxification. These results suggest that hepatic GS augmentation therapy has potential for treatment of both primary and secondary forms of hyperammonemia.


Assuntos
Amônia/metabolismo , Terapia Genética/métodos , Glutamato-Amônia Ligase/genética , Hiperamonemia/genética , Hiperamonemia/terapia , Fígado/metabolismo , Amônia/toxicidade , Animais , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/terapia , Modelos Animais de Doenças , Feminino , Técnicas de Transferência de Genes , Glutamato-Amônia Ligase/metabolismo , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos/genética
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 35(6): 848-851, 2018 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-30512161

RESUMO

OBJECTIVE: To explore the genetic basis for a neonate featuring hyperammonemia. METHODS: The patient was examined and tested by tandem mass spectrometry and next generation sequencing (NGS). Suspected mutations were confirmed by Sanger sequencing of the proband and her parents. Potential impact of the mutation was predicted with SIFT, PolyPhen-2 and MutationTaste software. RESULTS: Plasma ammonia and alanine were significantly increased in the proband, while serum citrulline was decreased. The neonate was found to harbor compound heterozygous mutations of the CPS1 gene [c.1631C>T(p.T544M) and c.1981G>T(p.G661C)], which were respectively inherited from her father and mother. CONCLUSION: The carbamoyl phosphate synthetase I deficiency of the proband can probably be attributed to the mutations of the CPS1 gene. Above finding has expanded the spectrum of CPS1 mutations in association with carbamoyl phosphate synthetase I deficiency.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Hiperamonemia/diagnóstico , Hiperamonemia/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Mutação
16.
Mol Genet Metab ; 125(3): 241-250, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253962

RESUMO

Argininosuccinic aciduria (ASA) is the second most common genetic disorder affecting the urea cycle. The disease is caused by deleterious mutations in the gene encoding argininosuccinate lyase (ASL); total loss of ASL activity results in severe neonatal onset of the disease, which is characterized by hyperammonemia within a few days of birth that can rapidly progress to coma and death. The long-term complications of ASA, such as hypertension and neurocognitive deficits, appear to be resistant to the current treatment options of dietary restriction, arginine supplementation, and nitrogen scavenging drugs. Treatment-resistant disease is currently being managed by orthotopic liver transplant, which shows variable improvement and requires lifetime immunosuppression. Here, we developed a gene therapy strategy for ASA aimed at alleviating the symptoms associated with urea cycle disruption by providing stable expression of ASL protein in the liver. We designed a codon-optimized human ASL gene packaged within adeno-associated virus serotype 8 (AAV8) as a vector for targeted delivery to the liver. To evaluate the therapeutic efficacy of this approach, we utilized a murine hypomorphic model of ASA. Neonatal administration of AAV8 via the temporal facial vein extended survival in ASA hypomorphic mice, although not to wild-type levels. Intravenous injection into adolescent hypomorphic mice led to increased survival and body weight and correction of metabolites associated with the disease. Our results demonstrate that AAV8 gene therapy is a viable approach for the treatment of ASA.


Assuntos
Argininossuccinato Liase/genética , Acidúria Argininossuccínica/terapia , Terapia Genética , Hiperamonemia/terapia , Animais , Argininossuccinato Liase/administração & dosagem , Acidúria Argininossuccínica/genética , Dependovirus/genética , Modelos Animais de Doenças , Humanos , Hiperamonemia/genética , Hiperamonemia/patologia , Camundongos , Ureia/metabolismo
17.
BMJ Case Rep ; 20182018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29895548

RESUMO

Rhabdomyolysis is an emergency requiring rapid diagnosis and suitable aetiological treatment. We describe the case of a 57-year-old man with recurrent exertional rhabdomyolysis who was diagnosed with systemic primary carnitine deficiency (SPCD). Clinical examination was normal, creatine kinase levels were elevated, plasma free carnitine concentration was mildly decreased, muscle biopsy demonstrated lipid accumulation, carnitine uptake in cultured fibroblasts was decreased and genetic analysis identified a homozygous pathologic c.1181_1183del in the SLC22A5 gene. Rhabdomyolysis did not recur after treatment with oral L-carnitine was introduced. SPCD is a rare autosomal recessive disorder of carnitine transportation usually manifesting as an infantile (hepatic) or a childhood myopathic (cardiac) condition and rarely affecting adults. Our case indicates that SPCD should be considered in the aetiological evaluation of adult patients with recurrent exertional rhabdomyolysis, even in the absence of myopathy and cardiomyopathy.


Assuntos
Cardiomiopatias/complicações , Carnitina/deficiência , Hiperamonemia/complicações , Doenças Musculares/complicações , Rabdomiólise/etiologia , Cardiomiopatias/diagnóstico , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Carnitina/genética , Carnitina/uso terapêutico , Testes Genéticos , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/tratamento farmacológico , Hiperamonemia/genética , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Doenças Musculares/diagnóstico , Doenças Musculares/tratamento farmacológico , Doenças Musculares/genética , Rabdomiólise/metabolismo
18.
J Craniofac Surg ; 29(6): 1601-1603, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29750726

RESUMO

BACKGROUND: Primary systemic carnitine deficiency (SCD) is an autosomal-recessive disorder caused by SLC22A5 gene mutation resulting in defective cellular carnitine transporter organic cation transporter 2. Defective carnitine transporter causes renal carnitine wasting and low serum carnitine. Carnitine is an essential cofactor for the transportation of long-chain fatty acids into the mitochondria. Lacking of carnitine may cause metabolic decompensation and sudden death when the patient is exposed to prolonged fasting before an operation. METHODS: An asymptomatic 9-month-old boy with SCD diagnosed by local hospital was referred to the authors' hospital for incomplete cleft palate plastic surgery. Due to potential metabolic decompensation from prolonged fasting before the surgery, the patient underwent proper perioperative management. RESULTS: The operation was successful and subsequent clinical course was fine. The patient was discharged on postoperative day 3. CONCLUSION: With proper perioperative management, patients with SCD and cleft palate can survive from prolonged fasting time before and during operation without metabolic decompensation manifestations. Early recognition of SCD and perioperative management can be lifesaving in preoperative infants with SCD.


Assuntos
Cardiomiopatias/genética , Carnitina/deficiência , Fissura Palatina/cirurgia , Hiperamonemia/genética , Doenças Musculares/genética , Assistência Perioperatória , Membro 5 da Família 22 de Carreadores de Soluto/genética , Cardiomiopatias/complicações , Carnitina/genética , Fissura Palatina/complicações , Jejum , Humanos , Hiperamonemia/complicações , Lactente , Masculino , Doenças Musculares/complicações , Mutação
19.
Mol Genet Metab ; 124(4): 243-253, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29801986

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) is a urea cycle enzyme that forms carbamoyl phosphate from bicarbonate, ammonia and ATP. Bi-allelic mutations of the CPS1 gene result in a urea cycle disorder presenting with hyperammonemia, often with reduced citrulline, and without orotic aciduria. CPS1 deficiency is particularly challenging to treat and lack of early recognition typically results in early neonatal death. Therapeutic interventions have limited efficacy and most patients develop long-term neurologic sequelae. Using transgenic techniques, we generated a conditional Cps1 knockout mouse. By loxP/Cre recombinase technology, deletion of the Cps1 locus was achieved in adult transgenic animals using a Cre recombinase-expressing adeno-associated viral vector. Within four weeks from vector injection, all animals developed hyperammonemia without orotic aciduria and died. Minimal CPS1 protein was detectable in livers. To investigate the efficacy of gene therapy for CPS deficiency following knock-down of hepatic endogenous CPS1 expression, we injected these mice with a helper-dependent adenoviral vector (HDAd) expressing the large murine CPS1 cDNA under control of the phosphoenolpyruvate carboxykinase promoter. Liver-directed HDAd-mediated gene therapy resulted in survival, normalization of plasma ammonia and glutamine, and 13% of normal Cps1 expression. A gender difference in survival suggests that female mice may require higher hepatic CPS1 expression. We conclude that this conditional murine model recapitulates the clinical and biochemical phenotype detected in human patients with CPS1 deficiency and will be useful to investigate ammonia-mediated neurotoxicity and for the development of cell- and gene-based therapeutic approaches.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/terapia , Terapia Genética , Hiperamonemia/terapia , Amônia/metabolismo , Animais , Carbamoil-Fosfato Sintase (Amônia)/uso terapêutico , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/patologia , Carbamoil-Fosfato/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Glutamina/metabolismo , Humanos , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Mutação , Orotato Fosforribosiltransferase/deficiência , Orotato Fosforribosiltransferase/genética , Orotidina-5'-Fosfato Descarboxilase/deficiência , Orotidina-5'-Fosfato Descarboxilase/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/patologia
20.
Hum Mol Genet ; 26(18): 3453-3465, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28911206

RESUMO

Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome gives rise to unregulated protein-induced insulin secretion from pancreatic beta-cells, fasting hypoglycemia and elevated plasma ammonia levels. Mutations associated with HI/HA were identified in the Glud1 gene, encoding for glutamate dehydrogenase (GDH). We aimed at identifying the molecular causes of dysregulation in insulin secretion and ammonia production conferred by the most frequent HI/HA mutation Ser445Leu. Following transduction with adenoviruses carrying the human GDH-wild type or GDH-S445L-mutant gene, immunoblotting showed efficient expression of the transgenes in all the investigated cell types. Enzymatic activity tested in INS-1E beta-cells revealed that the mutant was much more sensitive to the allosteric activator ADP, rendering it highly responsive to substrates. INS-1E cells expressing either the wild type or mutant GDH responded similarly to glucose stimulation regarding mitochondrial activation and insulin secretion. However, at basal glucose glutamine stimulation increased mitochondrial activity and insulin release only in the mutant cells. In mouse and human islets, expression of mutant GDH resulted in robust elevation of insulin secretion upon glutamine stimulation, not observed in control islets. Hepatocytes expressing either the wild type or mutant GDH produced similar levels of ammonia when exposed to glutamine, although alanine response was strongly elevated with the mutant form. In conclusion, the GDH-S445L mutation confers hyperactivity to this enzyme due to higher sensitivity to ADP allosteric activation. This renders beta-cells responsive to amino acid stimulation, explaining protein-induced hypoglycemia secondary to non-physiological insulin release. Hepatocytes carrying mutant GDH produced more ammonia upon alanine exposure, which underscores hyperammonemia developed by the patients.


Assuntos
Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Difosfato de Adenosina/metabolismo , Aminoácidos/genética , Animais , Glicemia/metabolismo , Hiperinsulinismo Congênito/genética , Glucose/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hiperinsulinismo/genética , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA